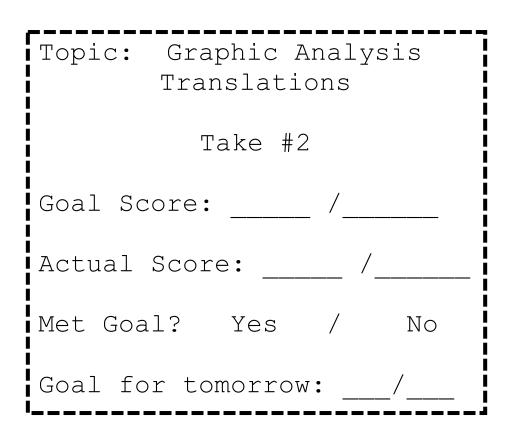
Uncommon | Change History.

Date _____ Education is Freedom Binder Section: DN

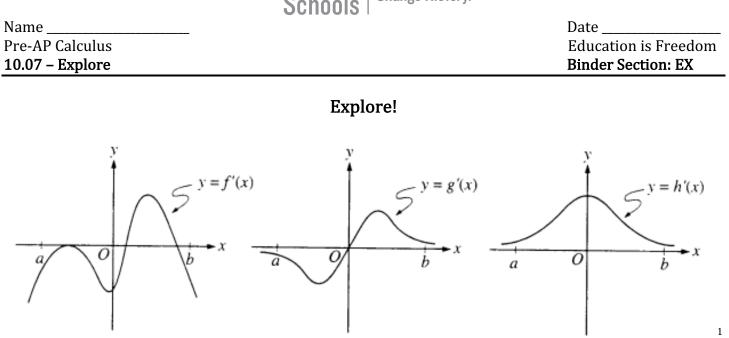

Do Now

- 1. The function g is given by $g(x) = 4x^3 + 3x^2 6x + 1$. What is the absolute minimum value of g on the closed interval [-2, 1]?
 - (A) −7
 - (B) $-\frac{3}{4}$
 - (C) 0
 - (D) 2
 - (E) 6

2. Find the locations of the absolute extrema of $h(x) = \frac{x^2}{x-1}$ on the closed interval $\left[-1, \frac{1}{2}\right]$.

Seat # _____

Date _____ Education is Freedom Binder Section: MM



Mad Minute – Graphic Analysis Translations – Take #2

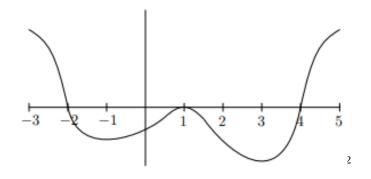
Directions: Fill-in-the-blanks with the correct graphic analysis term.

1.	If $f''(x) < 0$, then	2. If $f'(x) < 0$, then	3. If $f''(x) > 0$, then	4. If $f''(c) = 0$, then
	f(x) is	f(x) is	f'(x) is	x = c could be a
5.	If $f(x)$ is concave	6. If $f(x)$ is	7. If $f'(c) = 0$ and	8. If $f''(x) > 0$, then
	up, then $f''(x)$ is	increasing, then	f''(c) < 0, then	f(x) is
		f'(x) is	x = c is a	
9	If $f'(x)$ is	10. If $f(x)$ is concave	11. If $f'(x)$ is	12. If $f'(x) > 0$, then
	decreasing, then	down, then $f'(x)$	increasing, then	f(x) is
	2			J (X) 15
	f''(x) is	is	f(x) is	
13	. If $f'(c) = 0$, then	14. If $f(x)$ is	15. If $f'(c) = 0$ and	16. If $f'(x)$ is
	x = c is a	decreasing, then	f''(c) > 0, then	increasing, then
		f'(x) is	x = c is a	f''(x) is

Uncommon | Change History.

- The graphs of the derivatives of the functions *f*, *g*, and *h* are shown above. Which of the functions *f*, *g*, or *h* have a relative maximum on the open interval *a* < *x* < *b*?
 - (A) f only
 - (B) g only
 - (C) h only
 - (D) f and g only
 - (E) f, g, and h

Explain your reasoning.


Seat #_

Teacher Note

This is not a student facing notes page. Students should be using their Pre-AP Calculus

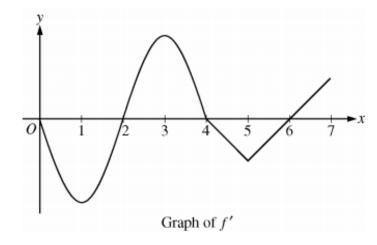
notebook to capture their "I Do" and "We Do" Example

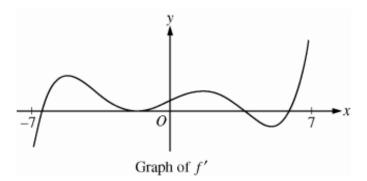
Example 1

- **1.** The figure above shows the graph of f', the derivative of a function f. Identify:
 - a) The *x*-values at which *f* has a relative maximum.
 - b) The intervals on which *f* is concave down.
 - c) The *x*-values at which the graph of *f* has a point of inflection.
 - d) The intervals on which *f* is increasing.

Seat # _____

Name _____ Pre-AP Calculus **10.07 – Classwork** Date _____ Education is Freedom Binder Section: CW

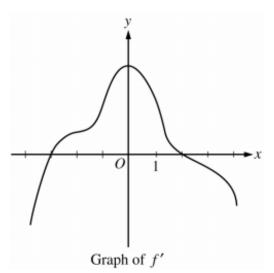

Problem Set A

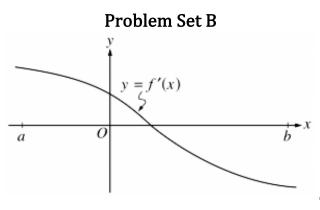

- The graph of f', the derivative of the function f, is shown to the right. On which of the following intervals is f decreasing?
 - (A) [2, 4] only
 - (B) [3,5] only
 - (C) [0, 1] and [3, 5]
 - (D) [2, 4] and [6, 7]
 - (E) [0, 2] and [4, 6]

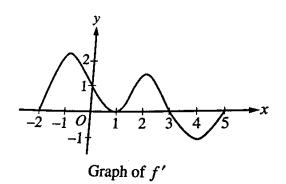
Justify your answer:

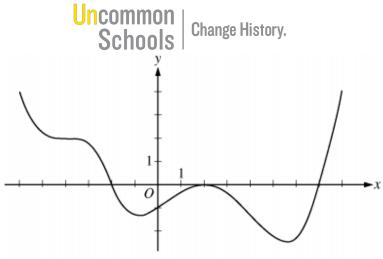
- 2. The figure to the right shows the graph of f', the derivative of the function f, on the open interval -7 < x < 7. If f' has four zeros on -7 < x < 7, how many relative maxima does f have on -7 < x < 7?
 - (A) One
 - (B) Two
 - (C) Three
 - (D) Four
 - (E) Five

Justify your answer:

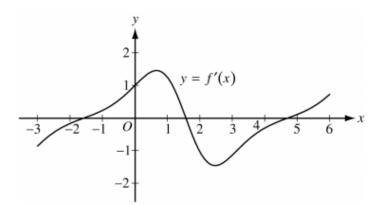


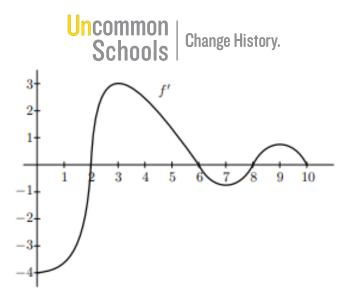

Example 2 – AP Multiple Choice!


- 1. The graph of *f*', the derivative of the function *f*, is shown above. Which of the following statements must be true?
 - I. *f* has a relative minimum at x = -3.
 - II. The graph of *f* has a point of inflection at x = -2.
 - III. The graph of *f* is concave down for 0 < x < 4.
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and II only
 - (E) I and III only



Name _____ Pre-AP Calculus **10.07 – Classwork**

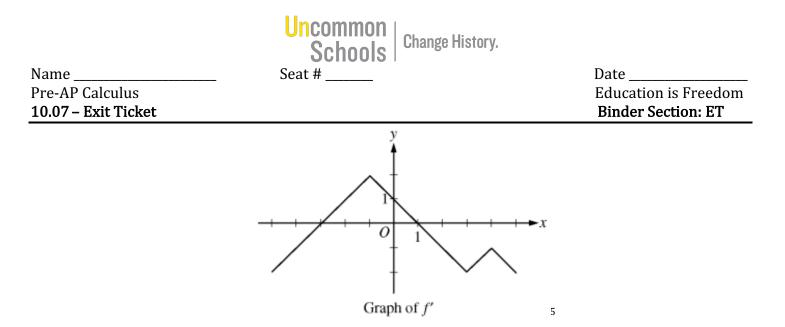

- 1. The graph of *f*', the derivative of the function *f*, is shown in the figure above. Which of the following statements must be true?
 - I. f is continuous on the open interval (a, b).
 - II. f is decreasing on the open interval (a, b).
 - III. The graph of f is concave down on the open interval (a, b).
 - (A) I only
 - (B) I and II only
 - (C) I and III only
 - (D) II and III only
- 2. The graph of f', the derivative of a function f, is shown to the right. The domain of f is the closed interval -2 ≤ x ≤ 5. Which of the following statements is true?
 - (A) f(x) is decreasing over (2, 4).
 - (B) f(x) is increasing over (4, 5).
 - (C) f(x) is increasing over (1, 3).
 - (D) f(x) has a local maximum at x = 2.
 - (E) f(x) has two local extrema on (-2, 5).



- 3. The figure above shows the graph of f', the derivative of the function f, for -6 < x < 8. Of the following, which best describes the graph of f on the same interval?
 - (A) 1 relative minimum, 1 relative maximum, and 3 points of inflection
 - (B) 1 relative minimum, 1 relative maximum, and 4 points of inflection
 - (C) 2 relative minima, 1 relative maximum, and 2 points of inflection
 - (D) 2 relative minima, 1 relative maximum, and 4 points of inflection
 - (E) 2 relative minima, 2 relative maxima, and 3 points of inflection

- 4. The figure above shows the graph of f', the derivative of the function f, on the interval [-3, 6]. If the derivative of the function h is given by h'(x) = 2f'(x), how many points of inflection does the graph of h have on the interval [-3, 6]?
 - (A) One
 - (B) Two
 - (C) Three
 - (D) Four
 - (E) Five

- 5. The graph above is the graph of the derivative of a function *f*. Use the graph to answer each of the following questions about *f* on the interval (0, 10). Justify each answer with 1 sentence.
 - a) On what interval(s) is *f* increasing?
 - b) On what interval(s) is *f* decreasing?
 - c) On what interval(s) is *f* concave up?
 - d) On what interval(s) is *f* concave down?
 - e) Find the *x*-coordinates of all relative minima of *f*.
 - f) Find the *x*-coordinates of all relative maxima of *f*.
 - g) Find the *x*-coordinates of all points of inflection of *f*.
 - h) At what value(s) of x is f''(x) undefined?

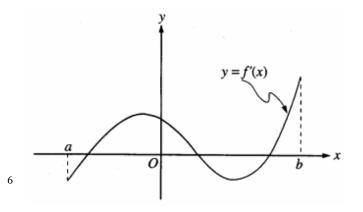

Fast Workers! Nice Job working through Problem Set A and Problem Set B. Keep the math fresh by

working through these spiral problems below.

- AP Open-Ended!
 - Each set of spiraled questions this week will be an actual AP open-ended problem from an old exam. Solve with a partner, then check with the scoring guide to see what score you achieved!
 - 1. Let *f* be the function given by $f(x) = x^3 5x^2 + 3x + k$, where *k* is a constant.
 - a) On what intervals is *f* increasing?

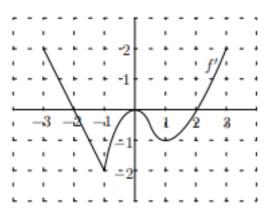
b) On what intervals is the graph of *f* concave downward?

c) Find the value of *k* for which *f* has 11 as its relative minimum.



- A. The graph of f', the derivative of f, is shown in the figure above.
 - 1. The function f has a local maximum at x =
 - (A) -3
 - (B) -1
 - (C) 1
 - (D) 3
 - (E) 4
 - 2. How many points of inflection does the graph of f have?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3
 - (E) 4
 - 3. On what interval(s) is *f* both increasing and concave down? Justify your answer.

Uncommon | Change History.


Name	Seat #	Date
Pre-AP Calculus		Education is Freedom
10.07 – Homework		Binder Section: HW
Part I [.] New Material – An	alyzing the Graph of $f'(x)$	

 The graph of *f*', the derivative of *f*, is shown in the figure to the right. Which of the following describes all relative extrema of *f* on the open interval (*a*, *b*)?

- Justify your answer.
- (A) One relative maximum and two relative minima
- (B) Two relative maxima and one relative minimum
- (C) Three relative maxima and one relative minimum
- (D) One relative maximum and three relative minima
- (E) One relative maximum and one relative minimum
- 2. The function *f* is defined on the closed interval [0, 8]. The graph of its derivative *f'* is shown to the right. How many points of inflection does the graph of *f* have?
- y = f'(x) y = f'(x)y =
- Justify your answer.
- (A) Two(B) Three
- (C) Four
- (D) Five
- (E) Six

3. The graph of f'(x), the derivative of f(x), is shown above. The domain of f is the interval $-3 \le x \le 3$. Which of the following is true about the graph of f?

- I. f is increasing on (-3, -2).
- II. f is concave down on (-3, -1).
- III. The maximum value of f(x) on (-3, 2) is f(-3).
- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) II and III only

Part II: Spiral Material - keep the math fresh!

- 4. Let *f* be the function defined by $f(x) = 2x^3 3x^2 12x + 18$. On which of the following intervals is the graph of *f* both decreasing and concave up?
 - (A) (−∞,−1)
 - (B) $\left(-1, \frac{1}{2}\right)$
 - (C) (-1,2)
 - (D) $\left(\frac{1}{2}, 2\right)$
 - (E) (2,∞)

¹ Author and Source Unknown. Uncommon Schools does not own the copyright in "Explore" and claims no copyright in this material. The material is being used exclusively for non-profit educational purposes under fair use principles in U.S. Copyright law. The user should make the judgement about whether this material may be used under fair use/fair dealing permissions in the user's country.

² Author and Source Unknown. Uncommon Schools does not own the copyright in "Class Notes" and claims no copyright in this material. The material is being used exclusively for non-profit educational purposes under fair use principles in U.S. Copyright law. The user should make the judgement about whether this material may be used under fair use/fair dealing permissions in the user's country.

³ Author and Source Unknown. Uncommon Schools does not own the copyright in "Problem Set A" and claims no copyright in this material. The material is being used exclusively for non-profit educational purposes under fair use principles in U.S. Copyright law. The user should make the judgement about whether this material may be used under fair use/fair dealing permissions in the user's country.

⁴ Author and Source Unknown. Uncommon Schools does not own the copyright in "Problem Set B" and claims no copyright in this material. The material is being used exclusively for non-profit educational purposes under fair use principles in U.S. Copyright law. The user should make the judgement about whether this material may be used under fair use/fair dealing permissions in the user's country.

⁵ Author and Source Unknown. Uncommon Schools does not own the copyright in "Exit Ticket" and claims no copyright in this material. The material is being used exclusively for non-profit educational purposes under fair use principles in U.S. Copyright law. The user should make the judgement about whether this material may be used under fair use/fair dealing permissions in the user's country.

⁶ Author and Source Unknown. Uncommon Schools does not own the copyright in "Homework" and claims no copyright in this material. The material is being used exclusively for non-profit educational purposes under fair use principles in U.S. Copyright law. The user should make the judgement about whether this material may be used under fair use/fair dealing permissions in the user's country.